Multi-point codes over Kummer extensions
نویسندگان
چکیده
This paper is concerned with the construction of algebraic geometric codes defined from Kummer extensions. It plays a significant role in the study of such codes to describe bases for the Riemann-Roch spaces associated with totally ramified places. Along this line, we give an explicit characterization of Weierstrass semigroups and pure gaps. Additionally, we determine the floor of a certain type of divisor introduced by Maharaj, Matthews and Pirsic. Finally, we apply these results to find multi-point codes with good parameters. As one of the examples, a presented code with parameters [254, 228,> 16] over F64 yields a new record.
منابع مشابه
Weierstrass semigroups from Kummer extensions
The Weierstrass semigroups and pure gaps can be helpful in constructing codes with better parameters. In this paper, we investigate explicitly the minimal generating set of the Weierstrass semigroups associated with several totally ramified places over arbitrary Kummer extensions. Applying the techniques provided by Matthews in her previous work, we extend the results of specific Kummer extensi...
متن کاملAlgebraic Geometric codes from Kummer Extensions
In the early eighties tools from algebraic geometry were applied by V. Goppa to construct linear codes using algebraic curves over finite fields, see [7]. Nowadays these codes are called algebraic-geometric codes, AG codes for short. The starting point in the construction of an AG code is a projective, absolutely irreducible, non singular algebraic curve X of genus g ≥ 1 defined over the finite...
متن کاملWeil descent attack for Kummer extensions
In this paper, we show how the Weil descent attack of Gaudry, Hess and Smart can be adapted to work for some hyperelliptic curves defined over fields of odd characteristic. This attack applies to a family of hyperelliptic and superelliptic curves over quadratic field extensions, as well as two families of hyperelliptic curves defined over cubic extensions. We also show that those are the only f...
متن کاملExplicit abelian extensions of complete discrete valuation fields
For higher class field theory Witt and Kummer extensions are very important. In fact, Parshin’s construction of class field theory for higher local fields of prime characteristic [P] is based on an explicit (Artin–Schreier–Witt) pairing; see [F] for a generalization to the case of a perfect residue field. Kummer extensions in the mixed characteristic case can be described by using class field t...
متن کاملO ct 2 00 8 Kummer Generators and Lambda Invariants
Let F0 = Q(√ −d) be an imaginary quadratic field with 3 ∤ d and let K0 = Q(√ 3d). Let ε0 be the fundamental unit of K0 and let λ be the Iwasawa λ-invariant for the cyclotomic Z3-extension of F0. The theory of 3-adic L-functions gives conditions for λ ≥ 2 in terms of ǫ0 and the class numbers of F0 and K0. We construct units of K1, the first level of the Z3-extension of K0, that potentially occur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 86 شماره
صفحات -
تاریخ انتشار 2018